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Constraints on the evolution of social
institutions and their implications
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British Academy Centenary Project, Institute of Cognitive and Evolutionary Anthropology, University of Oxford,
Oxford, UK

Abstract: Human communities and ego-centric social networks have a distinct size
that reflects a generic relationship between relative neocortex volume and social
group size that is characteristic of primates in general (the ‘social brain
hypothesis’). Human networks are structured into layers that reflect both
differences in the frequency of contact and levels of emotional closeness. The rate
of decay in the frequency of contact across network layers is very steep, and we
might expect this to have a very significant effect on the likelihood of Ego finding
out some novel fact when information flow is limited to face-to-face interaction. I
use an analytical model parameterized by these contact frequencies to show that
there may be little advantage in having a network larger than ∼150 for the
purposes of information exchange. I then present a Monte Carlo simulation
model to show that structure significantly impedes the rate of information flow in
structured communities.

Introduction

The Social Brain Hypothesis (Dunbar, 1992, 1998; Barton, 1996; Dunbar and
Shultz, 2007) provides an explanation for evolutionary pressures selecting for
large brains within the order Primates, the order of mammals to which humans
belong. It proposes that the principal selection pressure acting on the evolution
of brains has been the cognitive demands of sociality. One outcome of this
is a relationship between mean social group size for a species and its relative
neocortex volume. The assumption underlying the Social Brain Hypothesis is
that the computational capacity of a species’ brain (principally reflected in the
volume of its neocortex) sets a limit on the number of individuals who can be
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Figure 1. Mean group size for individual primate genera plotted against neocortex
ratio (ratio of neocortex to rest of brain). Open symbols: apes; closed symbols:
prosimians (on left) and monkeys.
Source: see Dunbar (1992).
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held together in a coherent social group. The core evidence to support this is the
fact that primates exhibit a distribution of group size in relation to relative brain
size that is surprisingly consistent (Figure 1). The relationship between neocortex
volume and social group size can be extrapolated to humans, and, based on the
great ape regression equation, predicts a fundamental social group size of ∼150
in modern humans (Dunbar, 1993). There is a considerable body of evidence to
suggest that this figure is characteristic of both natural human communities and
personal social networks (Dunbar, 1993, 2008; Hill and Dunbar, 2003; Roberts
et al., 2009).

Presumably, species-typical group sizes, and the brains that underpin them,
represent the outcome of an evolutionary tradeoff between the benefits of living
in groups of a particular size (in the case of primates, principally a reduction in
predation risk: Shultz et al., 2004; Shultz and Dunbar, 2007) and the energetic
costs of evolving and then maintaining the required additional brain tissue (Aiello
and Wheeler, 1995). What is less clear is what is involved in the cognitive
interface between brain size and social group size. The essence of the Social
Brain Hypothesis is that what differentiates primate sociality from that of other
species of animals (and hence requires that they have much larger brains for
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body size: Jerison, 1974) is that primate sociality is more complex. Exactly
what that involves is, however, by no means obvious, though there is plenty of
evidence to suggest that behavioural aspects of social complexity do correlate
with relative brain size among primates (e.g. grooming clique size: Kudo and
Dunbar, 2001; male mating strategies: Pawłowski et al., 1998; the frequency of
social play; Lewis, 2001; the frequency of tactical deception: Byrne and Corp,
2004; coalition formation: Dunbar and Shultz, 2007; social network structure:
Lehmann and Dunbar, 2009). Nonetheless, in principle, it has seemed reasonable
to claim that, in some explicit sense, individuals’ abilities to compute and
choose between alternative future social scenarios lie at the root of this. Some
evidence to support this claim has now been provided by neuroimaging studies
which have revealed correlations between the size of individuals’ socials networks
and the volume of key brain regions known to be involved in social cognition
(Powell et al., in press). Thus, there appear to be real cognitive constraints on
social network size that are underpinned by what is colloquially referred to as
the ‘wetware’.

Of more interest for present purposes, however, is the fact that social networks
themselves are highly structured. Hill and Dunbar (2003), Zhou et al. (2005),
and Hamilton et al. (2007) found that both human social networks and human
grouping patterns consist of a series of hierarchically inclusive layers that have a
scaling ratio of approximately 3. In effect, the ‘natural’ group size of ∼150 that
is characteristic of humans is, in fact, just one of a series of nested layers whose
successively inclusive sizes are approximately 5, 15, 50, 150, 500, and 1,500
(Zhou et al., 2005).

These layers are not equal in terms of strength of relationship. First, there
appears to be a significant difference between relationships with those individuals
who lie within the 150 layer compared to those who lie without. The 150-layer
seems to delineate those people with whom an individual has a personalized
relationship, a relationship based on some kind of shared history and personal
knowledge with whom there is some element of obligation and reciprocity. Those
who lie in the circles beyond 150 are known largely in terms of roles or categorical
types: we recognize them as individuals and we may well be able to attach names
to faces, but our relationship with them is categorical rather than personal (my
hairdresser, my doctor, the person who serves in my local store, the one who
reads the news on TV every night, someone I met once at a party, a work
colleague) and may well be one-way (I know who they are, but they may not
necessarily know who I am) and, importantly, the relationship lacks any intrinsic
sense of obligation and reciprocity. Second, even within the 150, relationships
are not homogenous across the layers (Figure 2). Hill and Dunbar (2003) and
Roberts et al. (2009) have shown that these layers exhibit quite distinct patterns
in terms of Ego’s1 emotional closeness to, and frequencies of interaction with,

1 I follow convention in the social networks area of referring to the individual whose personal social
network is being examined as Ego and the members of his/her network as Alters.
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Figure 2. Mean time to last contact for individuals classified by Ego in different
classes of a 1–10 emotional closeness scale for all individuals contacted at least
once a year (N = 2,934 individuals). 1 represents low emotional closeness,
10 represents high emotional closeness. The circles enclose what stand out as
different groupings. 50 individuals (1.7% of total sample) who were classified
as emotional closeness = 0 have been excluded.
Source: Hill and Dunbar (2003).
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individual network members. Both mean frequencies of interaction and typical
values of emotional closeness fall off rapidly with network layer. Very roughly,
the innermost layer of five intimates are contacted on a weekly basis, whereas
the rate of interaction with the 15-layer (the next layer out) averages around
once a month (Dunbar and Spoors, 1995), and contacts with those who lie in
the 150 layer average only once a year (Hill and Dunbar, 2003).

The fact that ego-centric social networks of the kind illustrated in Figure 2
map onto natural human groupings (as implied by the analyses in Zhou et al.,
2005) might imply that organizations tend towards specific sizes. Indeed, on a
more general note, it may well be that specific group sizes are more efficient
for certain activities than for others, depending on the level of personal and
emotional engagement required by the task, leading to a natural tendency for
groups of a particular type to cluster around particular sizes. In addition, the
fact that networks are as highly structured as they are, and that this structuring
is explicitly tied to frequencies of interaction, suggests that there may be limits to
the rate with which novel social institutions will flow through the system. This
is directly relevant to Grannoveter’s (1973) suggestions about the role of weak
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Table 1. Examples of human social groupings that conform to the predicted size of ∼150
individuals1

Grouping Typical size Source

Neolithic villages (Middle East, 6500–5500BC) 150–200 Oates (1977)
Maniple (‘double century’) (Roman army: 350–100BC) 120–130 Montross (1975)
Doomsday Book (1085): average county village size 150 Hill (1981), Bintliff (1999)
C18th English villages (mean of county means) 160 Laslett (1971)
Tribal societies (mean and range of clans; N = 9) 148 (90–222) Dunbar (1993)
Hunter-gatherer societies (mean clan size) 165 Hamilton et al. (2007)
Hutterite farming communities (Canada) (mean, N = 51) 107 Mange and Mange (1980)
‘Nebraska’ Amish parishes (mean, N = 8) 113 Hurd (1985)
C19th USA millennial cults (mean founding size, N = 52) 112 R.Sosis dataset
Church congregations (recommended ideal size) <200 Urban Church Project

(1974)
E. Tennessee rural mountain community 197 Bryant (1981)
Social network size (mean, N = 2 ‘small world’

experiments)
134 Killworth et al. (1984)

Goretex Inc: factory unit size ∼150 Gladwell (2000)
Company (mean and range for 10 World War II armies) 180 (124–223) MacDonald (1955)
Christmas card distribution lists (mean total recipients:

N = 43)
154 Hill and Dunbar (2003)

Research specialities (sciences and humanities) (mode,
N = 13)

100–200 Becher (1989)

Notes: 1Confidence intervals around the predicted mean are 100–200 (Dunbar, 1993).

ties in information exchange in networks. I return to this point in a later section.
First, I discuss in more detail the size and structure of natural human groupings.

Natural groupings

Table 1 summarizes a range of data that identify a consistent grouping size in
human social organization of between 100 and 200 (the 95% confidence limits
around the predicted value of 150 based on the ape social brain relationship)
across a wide range of social and historical contexts. These may be labelled in
different ways, but their essential structure is much the same – a community that
shares a common purpose or function.

Figure 3 illustrates this with a more homogenous dataset on the founding
sizes of American nineteenth-century utopian cults (see Muncy, 1973). These
include both explicitly secular as well as religious sects. They have a mean value
of 112 (range 4–5,000, N = 53). However, the data are strongly skewed (one
sample Kolmogorov–Smirnov test against a normal distribution, p = 0.005):
the median value is 41.5 (i.e. rather closer to the 50-layer), with small values
(sizes <15) being especially uncommon. In fact, Figure 3 clearly suggests that the
distribution is actually bimodal (with modes at ∼50 and ∼150). These results
suggest two conclusions. First, there is a minimum size that cults can have at
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Figure 3. Distribution of cult community size at time of foundation, for 53
nineteenth-century American utopian cults.
Source: Sosis and Alcorta (2003).
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foundation (typically not less than 15 members), and, second, that there may
be optimum sizes that work best which cluster around the 50 and 150 layers
identified by Zhou et al. (2005). There is some suggestion in these data that this
difference may relate to secular and religious cults, respectively.

Military organization provides a particularly clear example of the suggestion
that there are natural grouping sizes that work best, since performance on the
battlefield must be among the most demanding of circumstances: not only does
success depend on getting coordination within and between fighting units right,
but men’s lives are at stake. The structure of military units in historical as
well as contemporary armies seems to mirror quite closely both the numerical
values and the scaling ratio identified by Zhou et al. (2005) for natural human
groups (Tables 2 and 3). Of particular importance in this context is the size of the
company, the smallest military unit that can act independently. Figure 4 plots the
range of company sizes for a sample of World War II armies (boxed set on right
side). These have a mean of 177.7, and the variance around this is modest (SD =
34.4), although there is perhaps the hint of two separate groupings (the lower set
compromising Britain and Russia; the upper set comprising USA, Japan, France,
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Table 2. Organizational structure of modern armies

US Army1 Australian Army2

Unit Size Unit Size Number of lower units

Squad or section 9–10 Section 9–16 –
Platoon 16–44 Platoon 30–60 3
Company [battery/troop] 62–190 Company 100–225 3
Battalion or Squadron 300–1,000 Battalion 550–1,000 3–4
Brigade or Regiment 3,000–5,000 Brigade 2500–5,000 3
Division 10,000–15,000 Division 10,000–20,000 3
Corps 20,000–45,000
Army 50,000+

Notes: 1Department of the Army (1994); 2http://www.awm.gov.au/atwar/structure/army_structure.
asp#basic.

Figure 4. Mean company size in World War II armies (right-hand column), and in
European armies during some earlier periods. On the left are the basic fighting
units of the classical period armies of Persia (sabatam: c.450 BC) and Rome
(maniple: 350–100 BC), and of the Vikings (hafna: c.900 AD). Boxed on the right
are armies of the main protagonists at the outset of World War II.
Source: MacDonald (1955), supplemented by additional online information.
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Table 3. Structure of European armies during the War of the Spanish
Succession (c.1702)

Country Company Battalion Regiment

Austria 150 600 2,500
Bavaria 140 700 2,100
England 71 – 923
France 50 650 1,300
Netherlands 71 – 852
Prussia 145 725 1,450
Spain 78 550–936 –

Mean 100.7 416.1 1,520.8

Source: http://www.spanishsuccession.nl/organisation.html

and Germany). Both Germany and the USA reduced the sizes of their companies
(from 223 to 193, and from 185 to 147, respectively) well before the end of
the war, apparently to improve coordination within units rather than simply
because they were running out of conscripts (an especially unlikely scenario in
the case of the USA). Figure 4 also plots the typical size of companies through
time, including early examples of basic fighting units from armies of the classical
period. It seems as though military planners have experimented with various
sizes, and gradually settled on one – presumably the one that works best on
the battlefield. Note that in the early modern period (i.e. around 1700) before
the introduction of electronic communication systems to facilitate coordination
among the members of a fighting unit, company sizes were significantly smaller
(mean 122.8 ± 57.1 SD) than they were in mid-twentieth century (t = –2.38,
p = 0.033 with unequal variances).

Military organization also provides a clear example of the fact that higher
order groupings can be constructed (battalions, regiments, divisions, etc., at
numbers approximating 500, 1,500, and 5,000: Table 2). However, this is only
possible through the imposition of very strictly hierarchical line management
(the creation of a hierarchy of officer categories that mirrors the grouping levels)
combined with strict discipline (orders from higher up the command system
must be obeyed without question, on penalty of very severe punishment). This
point is well made in the context of the Hutterites, who deliberately split their
communities once they exceed 150 in size because, so they allege, it is impossible
to control a larger community by peer pressure alone, but instead requires a police
force and imposed discipline of a kind that is anathema to their communalistic
ethos (Mange and Mange, 1980).

In sum, these data thus suggest (1) that there is a consistent natural size
to human groups, (2) that these groups are themselves structured in a distinct
pattern of hierarchically inclusive layers, (3) that there may be optimal group
sizes that depend on the functions being subserved that may well reflect the
levels of trust and reciprocity required for that particular function, and (4) that
higher-order groupings (i.e. above 150) are possible, but require the external
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imposition of discipline and punishment to maintain coherence and cooperation
through time.

Information flow

In his classic paper, Grannoveter (1973) distinguished between two kinds of
relationships that individuals might have with each other (strong ties with
intimates and close friends, and weak ties with acquaintances) and argued, on the
basis of survey data on where jobless individuals gained their information about
available jobs, that weak ties played a uniquely important role in information
flow through communities and networks. Such information did not generally
come through strong ties. Information about the availability of job opportunities
is, in some sense, a specialized aspect of modern social life. However, it might
be seen as standing for a more general sense of information flow at a wider
level, including rumour, knowledge about new products or social events, new
ways to behave, etc., that have a rather older and more general relevance to us as
individuals. We can therefore ask whether there is a limit on how far out Ego can
acquire information when networks are structured in the way they appear to be.

To explore the implications of network structure for the rate at which
information might flow through a community, I modelled the likelihood that
Ego (at the centre of the network) would find out about some novel item of
information through direct face-to-face contact for communities of different
sizes (5, 15, 50, 150, 500, 1,500, and 5,000 individuals), given layer-specific
rates of contact. The probability of discovering some novel fact from individuals
up to an including layer i in the network, Plearn[i], is taken to be the cumulative
conjoint probability of encountering any given individual in a network layer of
size n and the likelihood that any one of these individuals would know the fact
in question

P
learn[i] =

i∑
5

(ni ∗ rK ) ∗ c
i[F2F], (1)

where ni is the number of individuals in the ith network annulus or layer, rK is
the likelihood that any one of them will know the fact in question (here taken to
be constant, and equivalent to rK = 0.01), ci[F2F] is the likelihood of contacting
any given individual face-to-face, with this function summed across successive
layers of the network from the innermost layer (the layer of 5 most intimate
Alters) up to and including layer i. Note this model views information as a
static property of an individual: information is not actively passed on from one
Alter to another within the network. Although obviously a radically simplified
assumption, for present purposes it provides a ‘first pass’ assessment of the
likelihood of discovering some vital fact about the world.

I parameterized the model using data on the frequencies of face-to-face
interactions obtained from a large sample (N = 251) of female ego-centric
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Figure 5. Probability of face-to-face contact with a randomly chosen member of
the successive circles of acquaintanceship, for the sample shown in Figure 2.
Solid symbols indicate observed data; open symbols: data extrapolated to larger
layers from the regression equation fitted to the observed data.
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networks from Belgium and the UK. Only women aged 18–60 years were
sampled. In addition to listing all members of their network, Egos were asked
to specify when they last saw each individual Alter and how emotionally close
they felt to them on a 1–10 scale (for details, see Roberts et al., 2009). Time
since last contact was transformed to yield a rate of contact per annum. I used
the emotional closeness categories to define the layers of each Ego’s network by
dividing the Alters ranked in order of declared emotional closeness into the first
5, the next 10, 35, and 100 to yield the successive annuli in the personal network,
and then calculated the mean rate of face-to-face contact with members of each
layer, averaging across all Egos.

Figure 5 plots the mean rate of face-to-face contacts with members of the
four core network layers of the network (the 5, 15, 50, and 150 layers), and
extrapolates this observed pattern out through the next three layers (500, 1,500,
and 5,000). The rate of contact declines exponentially, with the drop in contact
frequency being nearly 50% between the 5 and 15 layers alone. Contacts with
members of the outer layers (especially those beyond the 150) are extremely
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Figure 6. Cumulative probability of acquiring an item of knowledge through face-
to-face interaction with an individual who has that knowledge in communities
of different size (5, 15, 50, 150, 500, 1,500 and 5,000), based on the contact
rates shown in Figure 5. The model assumes that 1% of all community members
are knowledgeable.
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low – in the order of years rather than months between contacts. Thus the rate
at which information flows through the system is likely to depend on how deeply
structured it is (i.e. how steep the fall off in encounter rates is) and on the size
and connectedness of the layers.

I then used these values in equation (1) to calculate the cumulative probability
distribution across network layers (i.e. assuming that, successively, Ego only has
access to the first 5, 15, 50, 150, 500 . . . etc. members of his/her extended social
network). Figure 6 plots the results. The probability of acquiring information
reaches an asymptotic value at a community size of ∼1,500, with little further
gain in the likelihood of hearing about an innovation as community size increases
beyond this. The inflexion point (the point at which the marginal gain begins to
diminish) can be identified as the value of the X-axis where the asymptotic value
on the Y-axis is reduced by 1/e: here, this occurs at a community size of exactly 50.
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In other words, the gains to be had by increasing community size beyond ∼50
diminish exponentially and become trivial beyond a community size of ∼150
individuals. These results thus suggest that, if face-to-face information flow is the
issue, then communities larger than about 150 are likely to be of limited value in
any context where communication depends on face-to-face interaction. Since this
pertains universally in traditional small-scale societies, this suggests that there
has probably been little or no selection pressure favouring further increases in the
capacity to broaden or deepen communication. Rather, the principal selection
pressure has been for community sizes at least up to 50 individuals, and perhaps
up to 150.

This analytical model, however, offers only a static analysis. It assumes that
information does not flow through the system while Ego is searching for it;
instead, it assumes (rather unrealistically, perhaps) that community members
do not talk to each other and so cannot learn useful facts from each other. To
explore what happens when knowledge can flow through the network while Ego
is searching for it, we used a Monte Carlo simulation. However, the inevitable
complexity of a model in which information can flow in all directions means that
we need to make compromises in other respects. In this case, we have chosen
to limit the range of possible sources of information available to an individual
(in effect to the two innermost layers of the social network, the 5 and 15 layers)
and so have ignored the less frequent contacts that might occur between weak
links.

Most classic models of cultural evolution (e.g. Cavalli-Sforza and Feldman,
1981; Boyd and Richerson, 1985) have used mean field models whose dynamics
derive either from epidemiology or from conventional population genetics. Such
models assume random ‘mating’ throughout the network (everyone has an equal
chance of meeting and exchanging information [or genes] with every other
individual in the population). However, in most real world situations, random
mating is constrained by the spatial or social structure of the population. Our
model imposes structure by limiting the number of individuals that Ego can
sample when choosing what behaviour to adopt. We did this by the simple
device of setting individuals at the nodes on a lattice (formally, a torus in which
all the edges join up with their opposite edges) and then limiting their interactions
to the individuals at adjacent nodes, with declining probabilities of interaction
with nodes at successive steps removed (i.e. differentiating immediate neighbours
from neighbours of neighbours). In each generation, individuals acquire (learn or
copy) a trait either by adopting that of the individuals around them (copying) or
by personal discovery (i.e. ‘mutation’). Note that although the model is conceived
as a spatial model (nodes are on a physical lattice), in fact this can equally well
be interpreted as a social lattice in which interactions are restricted to certain
classes of individuals (who are represented as adjacent nodes on the lattice, just
as we might do so in a social network diagram). We used a lattice of size 100 ×
100, and thus a total population size of N = 10,000 individuals.



Constraints on the evolution of social institutions and their implications 13

Figure 7. The different sources of influence used in the agent-based model
of cultural evolution. Nodes on a lattice surrounding Ego (identified by the
large broken circle on the centre node) provide sources of influence in biased
transmission of trait type according to three types of relationship: cultural
parent (previous occupant of the node: black), immediate neighbours with whom
Ego can interact directly (grey nodes connected to Ego via lattice edges), and
neighbours of neighbours (unfilled circles, with whom Ego can interact only
indirectly through a neighbour node).

The population was initialized with all nodes seeded with cultural variant
d, with a mutant variant c seeded in the population with a probability of
p = 0.0001. At each successive generation (i.e. iteration), each node reproduces
and is replaced by a cultural ‘offspring’. The cultural variant of this offspring
is determined by the probability of acquiring variant c at that site. It can
acquire variant c either by mutation (with a very low probability determined
by a pseudorandom number in the interval [0, 1]) or by cultural inheritance
(biased transmission) from adjacent nodes. This second transmission probability
is determined by the cultural variant of the previous occupant of that node
(the ‘cultural parent’) and those of its eight immediate neighbours on the lattice
(Figure 7). In the latter case, we distinguish two kinds of neighbours: those
whom Ego can contact directly (the four nodes directly connected to Ego on a
vertical or horizontal lattice edge) and those whom Ego can only access through
its immediate neighbours on the lattice (i.e. friends of friends, identified here
as the four nodes on the diagonal corners of the square centred immediately
around Ego). In effect, these two types of neighbour correspond to friends
and friends-of-friends, respectively. The probability of acquisition (copying)
depends on the source’s network position, and these are defined as a0, a1,
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and a2 for the three types of neighbours (parent, friend, and friend-of-friend)
respectively, subject to the constraint that the weights for all nodes sampled
sum to

∑
ak = 1. In order to assess the impact of different gradients in the

transmission frequencies across the three model types, we used three different
weight profiles, wi, defined by the sets w1 = [a0 = 0.76, a1 = 0.04, a2 = 0.02],
w2 = [a0 = 0.52, a1 = 0.08, a2 = 0.04], and w3 = [a0 = 0.20, a1 = 0.10, a2 =
0.10], chosen to reflect a range of gradients from steep to shallow. For each
weight distribution, 100 simulations, run to fixation (pc = 1), were performed.
The details of the model are given in the Appendix.

We can show that this model produces identical effects to those of Boyd and
Richerson’s (1985) mean field model under the same conditions of panmictic
‘mating’. That is to say, when we relax the spatial constraint and allow
everyone to interact with everyone else with equal probability (i.e. probabilities
of acquisition a0 = a1 = a2 . . . = aN), our computational agent-based model gives
the same pattern and time to fixation by a mutant cultural variant as you would
get with Boyd–Richerson’s strictly analytical model of direct biased transmission
parameterized with the same values. This is important, since it allows us to be sure
that if our spatially structured computational model produces different results
from a classic Boyd–Richerson analysis, this must be due to the spatial structure
and not simply due to some trivial peculiarity in the way the computational
model has been constructed.

The mean (generational) rate of change in the frequency of variant c, p(i), for
a standard panmictic model is shown in Figure 8(a). As would be expected
under positive selection, the frequency of the mutant variant c increases to
full penetrance over time (typically 75–150 generations, depending on the
transmission probabilities involved). In contrast, for the same parameter values,
penetrance is significantly slower in a spatially structured population than in a
panmictic population, as indicated by the X-axis scale in Figure 7(b). Note that
the mean values in Figure 8(b) do not include the large fraction of simulations
that resulted in the extinction of variant c: extinction rates were 44% for set w1,
53% for set w2, and 60% for set w3. Extinction is a key feature of all stochastic
models, whether or not the models include population structuring, and is itself
an important feature of stochastic environments. These extinctions arise mainly
because the mutant trait disappears before it has managed to build up sufficient
numbers of descendents to influence copying rates in the following generation(s).

We chose both the size of the population (N = 10,000) and the number
of cultural influences (n = 9) for computational convenience. Changing lattice
size and the number of cultural parents has a quantitative, but not a qualitative,
effect on the transmission dynamics (for details, see Appendix). Having a smaller
number of cultural parents, for example, slows the rate at which the population
converges to full penetration by the novel cultural variant, but does not change
the fact that the model will eventually converge. Conversely, choosing a larger
number speeds up the rate of penetration, with a limit converging on the
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Figure 8. Time taken to fixation for a mutant cultural variant under (a) a Boyd–
Richerson (mean field) model of vertical transmission with direct bias and (b)
in a spatially structured population based on Monte Carlo simulation with
n = 9 cultural models for each individual on a 100 × 100 lattice matrix, for
three different transmission weights (w1: a0 = 0.76, a1 = 0.04, a2 = 0.02;
w2: a0 = 0.52, a1 = 0.08, a2 = 0.04; w3: a0 = 0.20, a1 = 0.10, a2 = 0.10). See
Appendix for details.



16 R . I . M . D U N B A R

Boyd–Richerson solution when n equals all nodes in the lattice (i.e. panmixia).
(For further discussion of other structural parameters on the model’s
performance, see the Appendix.)

These results suggest that population structuring is likely to play a critical role
in determining the rates at which cultural information flows through a system.
In fact, it seems intuitively likely that mean field models of the Boyd–Richerson
type are simply the limiting case for structured population models: mean field
models are equivalent to structured population models in which each individual
is directly ‘linked’ to every other individual in the population. It should be no
surprise, therefore, that the rates of cultural transmission are consistently greater
in mean field models than in structured population models.

The important implication here is that information transmission is greatly
slowed down in structured populations, even if we ignore all those cases where
the innovation peters out and goes extinct. Indeed, the relatively high rates of
novel variant extinction in the models (typically in the region of 50%) are a
further reminder that, in stochastic universes, novel cultural items can often fail
to spread even when there is significant selective bias in their favour. Since real
world situations are typically stochastic rather than deterministic, this should
remind us that cultural evolutionary processes are not necessarily always as fast
as we sometimes suppose.

Conclusions

In this paper, I have tried to make two points. First, the social world that we
experience as individuals is a great deal smaller than it might seem to be when
we view it top–down in terms of large-scale political structures. Ever since the
‘six degrees of separation’ phenomenon became widely known (the fact that
we can reach anyone in the world through six successive contacts: Travers and
Milgram, 1969; Watts, 2004), we have become used to thinking in terms of
networks of contacts that rapidly extend like a spider’s web across the entire
world, eventually connecting up all six billion of us into a single integrated
network. While in one important sense this is of course true, it is not necessarily
the case that my knowledge of other individuals really extends anything like
so far, never mind my willingness to behave altruistically towards them. The
second is that just because someone somewhere in that enormous network has
discovered some new fact or cultural trait does not mean that I will inevitably
learn about it. In the absence of electronic communication, real everyday social
life is very small scale. The six degrees do not necessarily mean that information
flows at a uniform rate through the network. The structuring and clumpiness that
characterizes real social networks has the inevitable effect of slowing down the
rate at which cultural innovations or information flow through the community.
I showed this with both a static model (parameterized with actual face-to-face
contact frequencies) and a dynamic agent-based model (with a narrower range
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of transmission processes), and both yielded broadly similar results. (I will leave
aside for present purposes the question as to whether electronic communication
and social networking media allow us to cut through that constraint.)

These two points may be particularly important in the context of gene-culture
coevolutionary models. These have tended to assume that the domain in which
cultural social learning occurs is relatively large (‘the tribe’), although the exact
numerical size of this population unit is never actually stated (e.g., McElreath
et al., 2003). In the ethnographic literature, the tribe is defined as all those
people who speak the same language (or dialect in the case of large language
groups), and this turns out to correspond to the 1,500 layer in our analyses (see
Dunbar, 1993). Thus the tribe is in practice probably very much smaller than
most of these analyses assume. More importantly, it is clear from our network
data that interaction frequencies are very heterogeneous within even this small
population. Indeed, most interactions (the source of most cultural learning) are
actually confined to an even smaller subset of the population (principally the
innermost 50 individuals, but certainly not much beyond the 150). Thus the
true range of models available for copying in cultural transmission processes is
actually confined to a group of individuals who represent only about 10% of the
entire tribe, even given this more restricted definition of what actually constitutes
a tribe. If doubt remains over this, it should be dispelled by the empirical evidence
showing that the spread of both obesity and happiness through networks is
limited to the first three degrees in the social chain (Christakis and Fowler,
2007; Fowler and Christakis, 2010a), although in practice the magnitude of the
effect from the third degree is marginal even if significantly above zero. Second
degree relationships appear to be equated with the 50 layer (essentially, friends
of friends), and third degree with the 150 layer (friends of friends of friends).

This is not to say that social learning (and indeed cooperation) may not extend
beyond these limits to a wider population. Rather, the point is that the levels of
both copying and, especially, cooperation that occur at this wider level may be
very much less frequent than we often usually suppose and may be subject to more
stringent evaluation of the tradeoff between the costs and benefits. Altruism and
concern for others principally extends to relatives (for reviews, see Strassman
and Stearns, 1998; Barrett et al., 2000), and relatives, even in contemporary
western societies, are invariably encompassed within the 150 layer (as indeed
they are in all traditional small-scale societies). Indeed, Fowler and Christakis
(2010b) found that willingness to reciprocate in a public goods game extended
only to second degree relationships (friends of friends). Similarly, in a review
of altruistic behaviour in a wide range of historical and contemporary societies,
Barrett et al. (2000) noted that unqualified altruism invariably occurred only
between biological relatives, whereas altruism towards unrelated familiars was
invariably explicitly reciprocal.

Unfortunately, in discussing the opportunities that individuals have of meeting
and cooperating with others in small-scale (especially hunter-gatherer) societies,
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commentators have often misunderstood the nature of these social systems:
they usually assume that the camp group or band (typically 25–50 in size) is
the basic social unit, and so argue that the fact that individuals and family
units frequently travel long distances (up to 200 km) to join other camps means
that they have considerable opportunity to meet strangers towards whom they
behave altruistically. In fact, it is the clan or community of 150 that constitutes
the basic level of social grouping, the band or overnight camp group simply
being a temporary subset of this population unit (Aurelli et al., 2008; Layton
and O’Hara, 2010). Similarly, in discussing the !Kung San hxaro system of
exchange (long-term dyadic exchange partnerships), Fehr and Henrich (2003)
note that the area over which the average couple’s 48 hxaro relationships extend
commonly covers an area of around 10,000–15,000 km2, and so encompasses
a population of something in the order of 1,500 individuals. They argue on
this basis that individuals must inevitably have many contacts with ‘strangers’,
with whom they may cooperate or exchange altruistic acts (e.g. being allowed
to use the local resources of the host camp). However, this misunderstands
the structure of hunter-gatherer societies, since 1,500 is precisely the limit on
the number of people that an individual might know by sight from personal
contacts over the longer term. These are not strangers, but the wider community
(or ‘tribe’) with whom an individual has definable relationships. Moreover, since
this is also the pool from which individuals normally choose their ‘marriage’
partners,2 everyone in this extended community is linked together through ties
of affinal kinship, with all the obligations that these entail: offending a friend of a
friend is to risk undermining one’s relationship with the friend. Cooperation and
altruism does not occur among casual strangers in the way these authors seem to
imagine.

A second issue that may have clouded discussion in this context concerns
exactly what is being exchanged in altruistic or cooperative interactions. A
central premise of evolutionary biology (‘Hamilton’s Rule’) reminds us that the
level of any such investment will be titrated against both the costs and benefits
that derive from the investment, as well as the opportunity costs incurred. The
bottom line is that cheap acts of altruism will be exchanged proportionately
more widely than expensive ones. This distinction is not always made as
clearly as it should be in the literature, and has been somewhat confused by
economists’ assumption that the opportunity cost incurred by wasting a small
fee provided by the experimenter is a genuine cost in biological terms. In fact,
the worst a subject in such an experiment can ever do is to be cost-neutral
(even if they do waste an hour of their time). It is noteworthy that it has
repeatedly been found that, in public good experiments, cooperation can only

2 I place quote marks around the term marriage because in such societies these are not formally
constituted through contracts, but rather are more casual living and mating arrangements.
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be maintained at even modest levels if punishment or social castigation are
available as tools to enforce it (Orstrom et al., 1994; Fehr and Gächter, 2000,
2002). The level of altruism in such contexts is thus at best marginal in biologists’
terms.

We can, of course, create larger communities within which exchanges
and cooperation occur, even beyond the 1,500-individual level. But such
arrangements are invariably built around shared norms in some form (as markers
of community membership, and hence trustworthiness and obligation) (Orstrom
et al., 1994; Orstrom, 2003; McElreath et al., 2003), and they invariably have
to be enforced by imposed discipline and punishment. Military organization
provides an explicit example of this, as does the fact that Hutterites split their
communities once they get above 150 precisely because they would require a
police force to maintain prosocial behaviour if they did not.

The findings I present here have at least two general implications for the
structure and evolution of social institutions. First, there may be optimal sizes
and structures for institutions. If the organization is below about 150 individuals,
then informal management structures may work very effectively. Of particular
importance in this respect is the sense of community, of ‘belongingness’, that
such institutions will have: as a result, individuals will feel a greater sense of
obligation towards each other and may cooperate more effectively in achieving
the institution’s goals. Shared cultural markers of various kinds may be important
both in identifying other community members and in engendering a psychological
predisposition to cooperate (Nettle and Dunbar, 1997; McElreath et al., 2003).
However, once an institution’s size exceeds ∼150, then formal management
structures are needed to solve two key problems associated, respectively, with
different kinds of information bottleneck (I will refer to these as casual and
deliberate bottlenecks). One is the fact that, in large organizations, information
simply does not flow where it should, even if everyone is keen for it to do so.
This is especially important in the case of the kinds of casual conversations
that are often responsible for imparting crucial but quite unexpected items of
information. Such casual information bottlenecks may be quite unintended, but
they arise simply because of lack of opportunity for face-to-face interaction. This
is the problem of having too small a watercooler: not enough people can gather
around it. The second problem is that rivalries are more likely to build up because
individuals owe loyalty to their immediate group (the 150) and this automatically
creates what amounts to in-group/out-group effects whenever sections of an
institution come into conflict. Indeed, irrespective of any conflict or rivalry
that might exist, they might arise simply because, in very large organizations,
a natural in-group/out-group division emerges between those who encounter
each other often (the 150) and those who are, effectively, strangers (the rest).
Unintended in-group/out-group effects of this kind will unavoidably give rise to
reduced cooperation and the development of deliberate (as opposed to casual)
information bottlenecks.
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Second, if information flow is important for an institution, then the precise
choice of numerical size and the way this community is structured may be
critical for how efficiently information flows through it (see also Lu et al., 2009).
While the rates of interaction may differ in political or business organizations
compared to the everyday social world, the fact is that all these institutions
involve relationships between individuals, and relationships of all kinds are
costly to maintain in terms of time investment. All that will change is the scale
of the outcome. As a result, there may be optimal group sizes for particular
types of communication: an organization that deviates in size from one of the
‘natural’ layers may result in less efficient information flow. If organization size is
significantly below one of these numbers, there will be a reduced likelihood that
some key fact which might later prove crucially relevant to the community will
be discovered. On the other hand, if the organization is too large, information
flow within the community will be slowed down: the core individual may never
find the person who has that knowledge within the requisite time frame. These
two sources of constraint are somewhat analogous to the well-known search
time and handling time constraints in foraging contexts that are responsible for
defining optimal foraging strategies (Stephens and Krebs, 1986).

Finally, it is worth reminding ourselves that, in institutional life as well as
in everyday life, interactions are invariably stochastic, and this inevitably has
particularly important implications for the rate at which information can flow
through an organization. This must be especially important for the spread of
innovations, since these are both unpredictable in where they occur and subject
to the vagaries of interaction between knowledgeable and naı̈ve individuals. This
must mean that innovations spread and achieve penetrance (100% adoption) at
very much slower rates than most conventional mean field models imply. In
particular, stochastic models are subject to serendipitous extinctions that do not
feature in more conventional algebraic models. Our models suggest that novel
traits (mutants) may have to be seeded (mutate) many times before they finally
take off. In some runs of our agent-based models, the novel trait went extinct
as many as 13 times before it finally built up enough demographic weight in
the population to take off, despite the fact that the mutant trait was always
advantageous.
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Appendix: Monte Carlo simulation model3

Following the notation of Boyd and Richerson, the variants of a dichotomous trait
are denoted by c and d, which occur in the population with frequencies p and
q, respectively. For present purposes, c denotes the variant favoured by bias. The
parameter B (where 0 ≤ B ≤ 1) is a measure of the effect of biased transmission. Each
individual in the population acquires its cultural variant from n cultural parents. The
probability that an individual is characterized by variant c, given exposure to the set
of cultural parents {X} with cultural variants X1, . . . , Xn, is

Prob(c|{X}) =
n∑

i=1

Ai Xi ,

where Xi = 0 if the ith model is variant c and Xi = 1 if the ith model is variant d,
and the importance factors, Ai, are given by

Ai = ai[1 + β(Xi)]
n∑

j=1

aj [1 + β(Xj )]

(2)

with

β(Xi) =
{
B if Xi = 1
−B if Xi = 0

.

3 This appendix was written with C.B. Lowen, Department of Psychology, University of Liverpool.
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The parameters ai are the weights associated with vertical transmission from each
of the cultural parents Xi. The frequency of variant c in the population after biased
vertical transmission, p’, can be written as

p′ =
1∑

x1=0

. . .

1∑
xn=0

Prob(c| x1, . . . , xn)Prob(X1 = x1, . . . , Xn = xn).

For specific values of n, B, the basic weights ai, and the value of p in the ith generation,
equation (1) can be used to determine the value of p in the (i + 1)th generation. For the
trivial case where n = 2, the frequency of variant c after a single vertical transmission
event is given by

p′ = p + p(1 − p)
(

4B a1 a2

1 − B2(a1 − a2 )2

)
.

This process assumes non-overlapping generations. If, instead, we treat both
the variant frequency, p, and time as continuous variables and allow for
overlapping generations, we can solve the analogous overlapping generations vertical
transmission model explicitly for p in terms of the generational time, t, and the initial
variant frequency p0 at time t = 0

p(t) = 1
1 + [(1 − p0)/ p0] exp−kt

,

where

k =
(

4B a1 a2

1 − B2(a1 − a2 )2

)
.

The Monte Carlo algorithm proceeds as follows. For the initial conditions, each
individual (or node) in the L = N2 lattice is given the variant value d, except for a
single randomly chosen node which is assigned the mutant variant c. At each iteration
(or generation), a new occupant is placed at each site. The cultural variant of the new
occupant at a given site is determined by the local probability of acquiring variant
c at that site and the selection of a uniformly distributed pseudorandom number on
the interval [0, 1]. The transmission probability at a given site is determined by the
cultural variant of the previous occupant, its nearest neighbours, and next-nearest
neighbours, with corresponding weights a0, a1, and a2. The weights are subject to
the same constraint as in the standard mean field model, namely

n∑
k=1

ak = 1

with the sum extending over each of the n cultural parents. If we define σ x,y(i) to be
the cultural variant (c = 1, d = 0) at site (x,y) at generation i, we can express the local
transmission probability for acquiring variant c in generation [i + 1 ], Px,y(i + 1), as

Px,y(i + 1) = Ax,y(i) σx,y(i) +
∑

j

Aj (i) σj (i) +
∑

k

Ak(i) σk(i),
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where the first sum with index j runs over all nearest neighbours of site (x,y), and the
second sum with index k runs over all next-nearest neighbours of (x,y). The weight
factors Al(i) are given by the expression

Al(i) = al [1 + β σl(i)]
n∑

m=1

al[1 + βσl(i)]

,

where the sum in the denominator runs over all n cultural parents, and the al represent
the transmission weights. For present purposes, we used

ax,y ≡ a0

ax+1,y ≡ ax−1,y ≡ ax,y+1 ≡ ax−1,y ≡ a1

ax+1,y+1 ≡ ax−1,y+1 ≡ ax+1,y−1 ≡ ax−1,y−1 ≡ a2.

In this way, the algorithm generates new occupants (i.e. offspring) for every site in
each generation, subject to the cultural transmission rules.

In a Monte Carlo model, the choice of pseudorandom number generator can be
critical. Our choice was the multiplicative congruential generator of Kalos

xn−1 = αxn mod m

with modulus m = 248 and multiplier a = 1113. This generator has been used
extensively in Monte Carlo studies at the Courant Institute and, in particular, has
passed all the standard tests for randomness (Knuth, 1969).

The only non-obvious aspect of our Monte Carlo algorithm is the data structure
employed to store the lattice configuration at each generation. In order to store
complete lattice configurations for each generation of the population, we maintain
a ‘bit map’ of the state of the lattice, as this allows for efficient data storage. That is,
each cell in the lattice is assigned one bit, which is set to 0 if the occupant of a cell is
characterized by variant d and is set to 1 if the occupant of the cell is characterized
by variant c. Blocks of bits are then stored compactly as words. Relatively fast
operations (shifts and logical operators) can then be used for data manipulation and
calculations of the occupants of lattice sites in future generations. The use of bit
operations and storage methods has both improved computation speed and allowed
for an easy transition to the study of large populations.

In addition, this compact method of data storage allows us to look in detail at the
dynamics of cultural evolution (such as variant clustering behaviour) from a spatial
or structured population perspective. Of course, it is recognized that this data storage
scheme is appropriate only for studies of dichotomous characters; however, it should
be noted that only minor modifications of this data structure have been required for
our initial studies of simple two-state ‘dilute’ models.

Lattice structure, periodic boundary conditions and other considerations
The analysis of spatially structured systems in other areas of science reveals that
both the equilibrium behaviour and the dynamics of the system depend on the
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dimension and connectivity of the system. In the case of regular lattice models,
the important considerations are generally the lattice dimension, D, the lattice
coordination number, q, the lattice size, N, and the lattice boundary conditions.
While it is clear that it is beyond the scope of a preliminary study of the dynamics of
a spatially structured system to report in detail on the effects of varying the lattice
parameters, it is appropriate to discuss briefly the consequences of changing the
lattice structure.

If all other lattice structural parameters are held constant, changes in lattice
dimension will have no effect on the system dynamics. If we choose a particular
lattice type (for example, regular lattice structures with q = 2D), then increasing the
lattice dimension reduces the value of t1/2 (the time taken to achieve 50% penetrance
by variant c). In the limit as D → N, the value of t1/2 approaches the mean field
(Boyd–Richerson) result, assuming that the n cultural parents are chosen at random.

If N is held constant, increasing the coordination number (q) of the lattice
effectively reduces the average number of ‘links’ between any two individuals in
the population. Therefore, increasing q decreases the value of t1/2. In the limit as
q → N, the value of t1/2 again approaches the mean field (Boyd–Richerson) result,
assuming that the n cultural parents are chosen at random.

The Boyd–Richerson mean field model of cultural transmission is continuous, and
therefore strictly applicable only to infinite populations. In contrast, a stochastic,
spatially structured model is discrete, and the dynamics of the system are inevitably
sensitive to system size. If other lattice and transmission parameters are held constant,
the value of t1/2 increases with increasing population size N. In fact, finite size system
scaling considerations lead us to expect the value of t1/2 to scale as a function of
system size (to first-order approximation) as

t∞1/2 = tN1/2 + Ae−bN ,

where A and b are positive constants. Preliminary analysis of the dynamics of
our spatially structured cultural transmission model for different population sizes
confirms the predictions of this scaling law.

If some type of periodic boundary conditions are imposed (e.g., regular, spiral,
skew), each unit in the population has the same number of nearest neighbors, next
nearest neighbors, and so on. That is, each lattice site has the same coordination
number q, and there is no other feature that makes one lattice site fundamentally
different from any other lattice site. In contrast, on lattices with edges the connectivity
of each site depends on the distance of that site from the lattice edge. This effect is
pronounced on smaller lattices where edge sites constitute a significant fraction of
the total number of sites, but diminishes with lattice size.

The imposition of periodic boundary conditions offers several significant
advantages. First, the dynamics of a system with periodic boundary conditions are
independent of the particular site at which the initial example of a new variant
occurs. Second, it is well established from studies of finite size system scaling that
the convergence of system properties to the infinite system limit is significantly faster
for systems with periodic boundary conditions. Finally, as a practical matter, it
is generally much simpler to implement system processes on lattices with periodic
boundary conditions as the processing rules are then site independent.
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Initial studies indicate that lattices with periodic boundary conditions show faster
rates of cultural transmission (smaller t1/2) than similar lattices with edges. This
result is sensible, as lattices with edges have an effective coordination number
q′ (determined by averaging over all sites) that is smaller than that of a lattice
with periodic boundary conditions. The degree to which the imposition of periodic
boundary conditions increases the transmission rate is dependent on the position at
which the new cultural variant emerges as well as on the population size. Again, this
result makes sense, as the effective coordination number q′ of a lattice with edges
approaches q in the limit at infinite population size; therefore, as population size
increases, the difference in the system dynamics between structured populations on
lattices with and without periodic boundary conditions diminishes.

In addition to the lattice structure considerations mentioned above, it is
also important to appreciate the consequences of varying other features in the
transmission process, such as the number of cultural parents, the importance (or
weight) of each parent in the transmission process, and the spatial distribution of
cultural parents, for example. Again, a complete analysis of the role of these factors
in the dynamics of the cultural transmission process is beyond the scope of our
initial study; however, we briefly discuss the effects of varying these transmission
parameters below.

The effect of varying the number of cultural parents in the spatially structured
model is similar to that observed for the mean field model; that is, the rate of cultural
transmission increases with an increase in the number of cultural parents (i.e., t1/2

decreases with an increase in n). However, the precise functional dependence of
t1/2 on n for the spatial model is clearly dependent on other factors, such as the
transmission weight scheme and the lattice structure. The dependence of the cultural
transmission rate in the spatially structured model on the distribution of weights
among the cultural parents follows a similar trend to that observed in the mean field
model. As the transmission weights become more uniformly distributed among the
n cultural parents, the rate of cultural transmission increases (t1/2 decreases).


